An Actor-Critic Algorithm With Second-Order Actor and Critic
نویسندگان
چکیده
منابع مشابه
An Actor-Critic Algorithm for Sequence Prediction
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Current log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. We address this problem by introducing a cri...
متن کاملHierarchical Actor-Critic
The ability to learn at different resolutions in time may help overcome one of the main challenges in deep reinforcement learning — sample efficiency. Hierarchical agents that operate at different levels of temporal abstraction can learn tasks more quickly because they can divide the work of learning behaviors among multiple policies and can also explore the environment at a higher level. In th...
متن کاملProjected Natural Actor-Critic
Natural actor-critics form a popular class of policy search algorithms for finding locally optimal policies for Markov decision processes. In this paper we address a drawback of natural actor-critics that limits their real-world applicability—their lack of safety guarantees. We present a principled algorithm for performing natural gradient descent over a constrained domain. In the context of re...
متن کاملOff-Policy Actor-Critic
This paper presents the first actor-critic algorithm for off-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in offpolicy gradient temporal-difference learning....
متن کاملMean Actor Critic
We propose a new algorithm, Mean Actor-Critic (MAC), for discrete-action continuous-state reinforcement learning. MAC is a policy gradient algorithm that uses the agent’s explicit representation of all action values to estimate the gradient of the policy, rather than using only the actions that were actually executed. This significantly reduces variance in the gradient updates and removes the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2017
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2016.2616384